离子交换是除去水中离子态物质的技术,采用离子交换法可制取软化水、纯净水与超纯水,在水处理领域中得到广泛应用。


其中,离子交换树脂由一种高分子的聚合物聚合而成,与其他离子交换剂相比具有交换容量高、机械强度高、化学稳定性较好等优点,因此离子交换树脂已成为目前水处理中普遍采用的材料。


针对需要使用离子交换树脂进行水处理的行业,监控树脂有诸多益处:


⭐避免夜班或周末等时段出现树脂失效的风险


⭐充分发挥树脂的工作效力,避免过早进行再生


⭐节约树脂再生过程中用于中和废水的酸\碱用量


同时,因树脂再生成本相当可观,而原水水质或者流速的不规律导致判断树脂失效的节点难以把控,这个环节一直被关注但鲜有突破。


当树脂几近失效时,相对最不容易吸附的离子会率先被释放出来。


阳离子树脂通常会率先泄露出钠离子,不建议直接测量电导率,因为阳离子树脂的下游的酸性环境,导致其电导率比上游更高,所以可使用钠离子分析仪进行监控。


同样,阴离子交换树脂则是通过检测硅酸根离子或电导率来判断,而混合型树脂则可直接监控电导率的变化。


这些方法常用且准确可靠,但他们都有一个致命的弱点,即只有在泄露发生时,才能被检测。即缺少了实际的报警意义,当报警发生时,系统下游已被污染。


好比在驾车过程中,汽车的油表发生了故障,只能在没油时才发出报警;但作为驾驶员,必须警惕燃油可能马上耗尽。


在日常操作中,通常对树脂失效的有效预测是通过系统运行时间和总处理量来衡量。如果平均流速趋于稳定,那运行时间可表征树脂的工作时限,不过这是建立在原水水质相对稳定的前提之上。


当我们用总处理量来衡量时,就类似于驾车时通过公里数来判断何时需补充燃油,这种方式也许是行之有效的;但如果驾驶路况不同时(高速路、山路、城市道路等),使用这种方式就难免出现不准确的情况。高速路、山路和城市道路,这些不同的情况就好比不同水质的原水。


121 (2).png


M800变送器具有一套独一无二的算法(DI-Cap),可以不考虑水质和流速等影响因素,监控去离子系统的交换能力,在穿透前准确预测树脂失效的时间。


152 (2).png


通过检测进水的电导率然后换算成总溶解固体(TDS),该非线性算法修正了水本身的电导率(测量范围在纯化水范围)以及在高浓度溶液中离子活度系数的降低。同时,测量流量并将其纳入到计算公式中。通过计算,我们可以得到一个关于进入离子交换柱的离子的测量值,转换后可以通过单位体积碳酸钙的形式显示读数。


利用这个体系,可以综合流量和水质的可变情况,提供树脂离子载荷的估计值。使用DI-Cap监控离子交换能力,就像是一辆拥有根据不同路况计算油耗的汽车一样。


DI-Cap为大容量离子交换系统提供了有效的操作和解决问题的方式。除此之外,在反渗透的透过端,冷凝水等应用场合,也可以使用这种检测方式。


更多信息请点击下方链接或扫描二维码了解


https://www.mt.com/cn/zh/home/products/Process-Analytics/transmitter/multi-parameter-digital-transmitter-M800.html


1608708940.png

发布时间:2021年1月7日 13:32 人气: 审核编辑:王妍

我有需求