工业相机镜头的完整指南(上)
简 介
工业相机使用的典型镜头实际上是由外壳内部的多种光学镜片组成的镜头系统。根据不同的技术,这种类型的相机镜头称为“复合镜头”。然而,当相机镜头配备可安装各种相机的安装环时,通常俗称为镜头系统。视觉系统选择适当的相机镜头对于实现特定的成像效果至关重要。本文将探讨镜头的物理属性、镜头类型及其独特的光学特性和其他考虑因素,例如与不同尺寸传感器的兼容性、足够大的光圈以及光学像差的影响。本文末尾也将讨论扩展从镜头选择中受益比较大的应用情况。相机使用的各种镜头如图1所示。
图1|各种尺寸和焦距的镜头
物理结构
焦距
为应用选择合适的镜头需要仔细考虑镜头焦距问题。有两种主要类型的相机镜头,分别为定焦镜头和变焦(也称为可变焦距/套装)镜头。这两种类型镜头的主要区别在于定焦镜头具有固定焦距,而变焦镜头具有一系列不同的焦距。
焦距是相机传感器到相机镜头光线聚焦位置的距离,如图2所示。焦距通常以毫米(通常缩写为mm)为单位,能够传达大量有关待捕获图像类型的信息,例如镜头可以拍摄图像的视角(通常称为视野或FoV)以及图像内目标的放大倍率。如需了解根据应用的工作距离找到完美焦距的数学方法,请阅读白皮书《为视觉系统选择镜头》。
图2|测量相机系统内的焦距
对视角影响不大的正常焦距约为50mm。这种视角类似于人眼可以看到的正常视角。典型变焦镜头的焦距范围为35-70mm,并提供一系列视角,但不会过度拉伸或放大拍摄对象。尽管由于胶片和传感器的物理设计,这种视角被裁剪成一个框框,但它仍然是捕获“正常”图像的标准。
本文将探讨各种类型的镜头,以帮助相机用户更好地了解每种镜头类型可以实现的功能,例如使用长焦镜头获得更近距离(或放大)的图像,用广角镜头增加FoV。
聚焦环
相机用户手动调节相机镜头的焦距被称为拉焦。当某人需要调整相机位置并重新聚焦镜头时,通常采用拉焦这种方式。在商业成像应用中,用户倾向于将工业相机连接至位置固定的安装设备。当相机始终指向同一个目标时,定焦镜头可以在设置过程中调节焦距,或者使用自动对焦来调节焦距,但没有可以改变焦距的变焦环。但是,某些需要移动组件的应用可能需要相机在不同焦距处重新聚焦。在相机移动拍摄的应用中,例如机器人或航空成像,是否能够用不同焦距的镜头进行聚焦可能会很重要。
变焦环
变焦环可以改变相机的焦距。增加相机的焦距后,变焦环实际上会缩小FoV。因此拍摄出特写图像,但视野内的周围环境细节会减少。图3对此进行了举例,其中相机越放大(焦距越长),相机聚焦的距离越远,FoV就越窄。
图3|视野随焦距增加变长变窄
相机镜头内的光学元件数量因镜头类型而异。一般来说,其中一个主要因素为镜头是变焦镜头还是定焦镜头。套装镜头在镜头组合件中将有更多的镜片,因为这种镜头需要能够调节相机的焦点。变焦环增加了相机的光学元件,因为它引入了更多需要调节到达传感器的光线的部件。但是,定焦镜头操作通常更简单,零件也更少。因此价格通常也比较实惠。
镜头接口
在选择镜头之前,通常首先考虑相机或传感器。针对特定应用选择相机时,需要根据镜头接口的类型来确定可用的镜头类型。制造商可能会使用独特的、或专有的接口来将镜头固定到相机上。各种镜头接口可以兼容一系列不同尺寸的相机传感器。由于大多数镜头接口设计只兼容特定尺寸的传感器,在调整至新镜头时,可能需要使用兼容的相机,或者采用更实惠的解决方案—转接环。转接环允许相机使用通常与其不兼容的镜头接口。因此诞生了许多可与相机组合的潜在镜头类型和制造商。
整合镜头与转接环时,制造商之前可能已经植入的某些专有技术可能不再兼容。这可能会导致相机失去部分有用的功能,例如自动对焦或通过相机调节光圈的能力。但是,如果工业相机制造商进行OEM级别的整合,则仍有可能整合一些通常只归属于镜头制造商的功能。例如,Teledyne Lumenera可以利用佳能EF镜头内置的自动对焦功能。
但是,比较理想的情况是使用与相机传感器尺寸相匹配的镜头,从而比较大限度地提升光学性能。常见的镜头接口类型包括A、E、EF、C、CS和S接口(也称为M12接口)。Teledyne Lumenera比较常将C接口和CS接口镜头用于机器视觉和工业应用。归根结底,给定成像应用中使用的镜头接口类型将根据相机类型和任何尺寸限制而有所不同。
图4|微型三分之四(M4/3)传感器的镜头接口
镜头清晰度
搭载大型传感器和高像素数的工业相机可以拍摄出非常清晰的图像。视觉系统的比较大分辨率取决于相机传感器。然而,为了拍摄出这些高分辨率图像,相机必须配备一个可以优化图像质量的镜头。
视觉系统的有效分辨率受相机镜头的限制。这是因为镜片玻璃的缺陷会降低图像质量。光线通过镜头时都会受到影响,包括光学像差或只是有划痕或发生内部损坏。镜头的价格差异很大,这对可以达到的清晰度水平会产生巨大的影响。通过针对光学元件的一个潜在问题进行调整,或提高制造过程中的清洁度、安排新的缺陷检查等,每一项额外措施都会增加镜头的制造成本。
在工业成像中,相机镜头通常根据每毫米线对的清晰度进行分级。通过识别图表上视觉效果截然不同的比较窄线对,可以测量分辨率水平以表示可以通过镜头进行成像的细节量。为了更准确地测量图像清晰度,市场还推出了软件解决方案来分析特定图表(例如USAF或星图)的成像结果。下文图5显示了其中一个示例,图中的一对相机对ISO 12233图像质量测试图进行成像。
图5|多台Teledyne Lumenera相机拍摄ISO 12233图像质量测试图
相机的曝光时间和增益对清晰度也有较大影响。如果目标是使分辨率比较大化,除了选择适当的镜头外,相机的照明和设置也起着重要作用。如需了解更多有关如何正确配置相机的信息,请参阅Teledyne Lumenera的博文《相机配置:曝光时间和增益对图像噪声的影响》。
必须考虑特定的视觉应用是否真的需要非常清晰的细节。使用高像素传感器时,使用高质量镜头的优点是可以带来更好的有效分辨率。即使使用质量较差的镜头,也可以使用更大的传感器来提高图像的清晰度。如果高分辨率传感器配备能够再现细节的镜头,则可以进一步提高清晰度。传感器和镜头分辨率/清晰度对于充分利用图像都很重要。
镜头类型
本文介绍了几种类型的镜头,每一种镜头都代表一组会产生特定类型图像的特征。选择适当的镜头类别将为应用提供更好的选择。本节介绍了各种镜头,例如定焦镜头与变焦镜头、广角镜头、直线镜头和鱼眼镜头、长焦镜头、微距镜头和移轴镜头。图6中可以看到各种这些镜头。
图6|一组具有不同广角和长焦镜头组成的定焦和变焦镜头
定焦镜头和变焦镜头
有两种主要的镜头类型,即定焦镜头和变焦镜头。这两种镜头之间的主要区别在于焦距。定焦镜头是固定焦距镜头,而变焦镜头的焦距范围可以使用可顺时针或逆时针移动的变焦环等机制进行调节。定焦镜头和变焦镜头之间的比较如下图7所示。
图7|定焦镜头(左)和变焦镜头(右)
在工业应用中,相机在使用过程中通常会执行重复性任务,并且通常配备定焦镜头。但是,对于相机必须对不同距离的物体进行成像的应用,需要安装变焦镜头。
因为定焦镜头的组件较少,所以通常是更实惠的选择。结构简单可以产生质量更好的图像,因为变量越少,制造过程中出现问题的可能性就越小。
变焦镜头的灵活性更强,因为它们具有许多不同的焦距。为了调节焦距,镜头系统通常需要更多的光学元件和移动部件,帮助将镜头内的光线聚焦到不同的位置。复杂程度提高会增加相机镜头的成本。制造焦距可调的镜头系统的流程复杂,可能会导致清晰度降低。因此,如果不需要各种焦距,一般认为定焦镜头更可靠,可以提高图像质量。然而,镜头技术不断改进,定焦镜头和变焦镜头之间的质量差距不断缩小。这确保即使对于光学要求严格的应用,定焦镜头和变焦镜头通常都是比较合理的选择。
广角镜头
广角镜头因镜头提供的广视角而得名。图8中可以看到一对广角镜头。在这张图像中,我们可以看到镜头表面的弯曲程度远高于长焦镜头。这种夸张的曲率允许更宽角度的光线进入镜头并通过镜头系统重定向到传感器。
图8|一对广角镜头
对于通常需要自上而下进行拍摄的成像应用,例如智能交通系统(ITS)和航空成像,一般选择这种类型的镜头。图9左侧描绘了对多条车道一次成像的交通视觉系统,右侧是用于精准农业对大范围农作物进行成像的航空成像系统。较短的焦距通常FoV会更宽,例如使用17或28mm镜头可以帮助相机一次拍摄更多区域。
图9|拍摄智能交通系统(左)和精准农业(右)图像使用的广角镜头示意图
使用更宽的FoV面临的问题是更宽图像会增加失真。市场上有更精细/更昂贵的光学元件可以纠正广角镜头的失真。使用图像或视频编辑软件还可以调整和补偿失真,并且通常可以生成FoV更平坦的图像。
直线镜头和鱼眼镜头
图10|直线镜头(左)和鱼眼镜头(右)
使用广角镜头的优点是FoV增加。但是,发生的桶形失真会影响图像分析的结果。直线镜头可以消除这种桶形失真。即使这些镜头仍然会出现部分失真问题,在后期图像处理中也可以进行简单校正。如果视角很宽,即使镜头搭载可以补偿失真的光学元件也不会形成平坦的完美FoV。然而,现代镜头技术减轻了这些影响,因此这些问题几乎可以忽略不计。
与直线镜头相反,鱼眼镜头使用广角FoV,但无法校正失真。一般而言,在FoV中,鱼眼镜头能够形成接近180度的视角,但会导致图像扭曲,生成圆角图像。可以通过图像后期处理来校正这种失真问题。但是,进行校正通常会改变图像的边缘。拉伸和收缩后,图像终会丧失清晰度,在光学校正图像情况下通常不会出现这种问题,镜头能够向传感器提供无失真的图像。或者可以裁剪图像去除失真部分,但这会消除使用宽FoV形成的优势。
长焦镜头
图11|长焦镜头组,说明大小尺寸都可以实现较长的焦距
在相反的光谱中,长焦镜头缩小了相机的FoV。使用100或200mm等更长的焦距,相机可以有效聚焦更远的目标。FoV狭窄并不包括广角镜头中经常出现的失真,但在质量较差的镜头或极长焦距处,可能会发生枕形失真,从而向图像两侧弯曲。在图12中,可以看到变焦长焦镜头完全伸展至长焦定焦镜头旁边。进入广角镜头的光线需要挤压后才能到达传感器,而来自长焦镜头的光线有一条非常直接的路径到达传感器。
图12|两种长焦镜头:变焦镜头(左)和定焦镜头(右)
使用广角镜头的优点是FoV增加。但是,发生的桶形失真会影响图像分析的结果。直线镜头可以消除这种桶形失真。即使这些镜头仍然会出现部分失真问题,在后期图像处理中也可以进行简单校正。如果视角很宽,即使镜头搭载可以补偿失真的光学元件也不会形成平坦的完美FoV。然而,现代镜头技术减轻了这些影响,因此这些问题几乎可以忽略不计。
微距镜头
图13|100mm焦距的微距镜头
镜头只能靠近目标,否则就无法对焦。微距镜头的焦距范围很大(大约35-200mm,但不仅限于这个范围),但通常在该范围的中间位置才会产生比较优效果。焦距无需过短,因为如此一来光线也会减少。镜头FoV更宽,相机将需要更靠近拍摄对象,从而导致相机可能阻挡阳光并在拍摄对象上投下阴影。如果焦距太长,相机需要放在更远的距离进行拍摄。试图聚焦在一个小物体上时,可能会出现问题,并且由于焦距较长,观察者被迫与自己保持物理距离。在焦距很长的情况下,相机将无法靠近目标,因此终会降低镜头的放大倍率。
捕捉特写微距图像的价值来自它能够提供放大倍率。微距镜头可以提供至少1:1的放大倍率,这意味着传感器捕获的图像与目标的实际尺寸成正比。有些微距镜头可以将图像放大到超过标准1:1的比例,但通常镜头价格也会飞涨。然而,如果较小目标的成像细节至关重要,则需要更高的放大倍率。
比较小焦距是影响微距镜头价值的另一个因素。例如,两个镜头可能都能够拍摄具有相同放大倍率的微距图像,但通常认为能够在距离目标更近的距离处对焦的相机更有价值,因为镜头的工作距离更灵活。这意味着焦距比较小的优质镜头会形成更长的景深(DoF)。下文图14中可以看到这一点,其中黄色区域代表DoF。
图14|相机及其比较小焦距对比
移轴镜头
图15|24mm移轴镜头
移轴镜头允许相机的内部光学元件从光轴上移开。由于存在移位机制,移轴镜头可能是比较复杂的镜头系统之一。在图16中,上图表示位于地面的相机正在捕捉建筑物的图像,但画幅中并未捕获到建筑物的完整高度。中间图表示位于地面的相机的移轴镜头向上移动,以在画幅中捕获建筑物的全视图,同时保持相机传感器与建筑物平行。使用移轴镜头的优点是能够不扭曲垂直线的视角,例如建筑物的结构,从中间图中可以看到,建筑物没有任何视角问题。下图显示相机向上倾斜,以捕获画幅内的整个建筑物。但是,相机角度向上会导致垂直线的角度发生偏移。在对大型结构进行成像或从较低高度进行成像时,这种扭曲可能会引发问题。
图16|移轴镜头采用的机制能够正确捕捉建筑物的垂直线
使用移轴镜头的另一个优点是能够在没有更小光圈的情况下捕捉整个图像的焦点。倾斜镜头可以实现这一点,因此焦点平面不再像通常一样位于相机前方,而是朝下倾斜,从而拉伸明显的DoF。或者,镜头可以移动光学元件,如此一来,只有一部分图像能够保持聚焦。这种部分或选择性焦点通常终会使图像中的目标看上去很小。
如前所述,移轴镜头可以修复失真问题。其中包括由于相机传感器与图像平面的位置而通常会聚的平行垂直线问题。移轴镜头使相机能够与正在成像的表面保持平行,而无需将相机向上或向下倾斜来捕获成像对象。图16中可以看到失真和校正后的垂直线之间的对比情况,中间是校正后的图像,底部是垂直线失真的图像。移轴镜头本身可以倾斜,使相机固定就位。图17显示了移轴镜头的轮廓示例。镜头底座可以保持在一个位置,而其余部分可以向目标倾斜。
图17|移轴镜头调节轴偏移